ADAPTIVE ORBIT DETERMINATION FOR
INTERPLANETARY SPACECRAFT

P. Daniel Burkhart” Robert H. Bishop!

The interplanetary orbit determination problem has been tradition-
aly solved using least-squares techniques. Due to operational limi-
tations of this method, a Kalman filter approach has been proposed
for future missions. The proposed approach, known as the enhanced
filter, includes all spacecraft and measurement modeling states in the
filter. The goal of the enhanced filter is to increase the accuracy of
the navigation process while utilizing only 1 audiometric (1 Yoppler and
range) data. As an extension to the enhanced filter, an adaptive orbit
determination approach (based on the Magill filter bank) has been
developed here to process radiometric data. This adaptive approach
can beused as a systematic method for thedetertpination of the
operation al enhanced filter parameters, which are currently selected
using ad hoc methods. The first step in the development of the adap-
tive enhanced filter bank is the determination of the significant errors
in the problem, which is accomplished usingcovariance analysis to
d evelop an error budget. The Mars Pathfinder mission is utilized to
demonstrate the effectiveness of the adaptive enhanced filter bank in
determining variances for the process and measurement noise param-
eters based 011 the tracking data. The results for the range data case
show that the adaptive enhanced filter bankis effective in selecting
the process and measurement noise variances that match those used
to generate the data. Results for the Doppler only case arc not as
conclusive, due primarily to linearization er rors.

1 Introduction

The orbit determination problem for interplanetary spacecraft involves the calcu-

lation of spacecraft states (i.e. position and velocity) and associated estimation

*Rescarch Assistant, Department of Aerospace Enginecring and Engineering Mechanics, The
University of Texas, Austin, Texas 78712; Mcinber Al AA.
t Assistant Professor, Department, of Aerospace Enginecring and Engineering Mechanics, The

University of Texas, Austin, Texas 78712; Meinber Al AA.




uncertainty measures based on information received from measurements that arc
corrupted by various errors and random noise. The motivation for the work pre-
sented here is to improve the tools used to perforni this task.1Jue to reductions in
resources for navigation,the number of navigation team members will be signifi-
cantly reduced for future missions. For many past missions, navigation teams had
twenity members or mom, and current projections arc for threc or four navigation
tcam members. Combined with the navigation rcquirements for future missions,
the amount of work required using current tracking methods is a major burden
given the size of the navigation teams. One problem is the lack of a systematic
mecthod for determining appropriate values for the operational orbit determination
filter. Incurrent interplanetary navigation practice, the operational filter parame-
ters, suchas time constants, gravitational parameters, noisc variances and system
parameters, arc generally selected by trial and err or based on experience and com-
puter simulation. The filter parameters arc selected and the measurement data
processed. Based on the simulation results, the filter parameters may be changed
and the data processed again, or the current result may be accepted. During this
iterative process, oftenthe measurement data is de-weighted, resulting in estima-
tion errors that arc generally higher than the dat a requires. This ad hoc approach
to filter tuning, in addition to failing to take full advantage of theinherent data ac-
curacy, requires a large number of navigation teain members to analyze the results
from the data processing. Despite the success of this approach in the past, the
current realities do not support its continued usc. The orbit determination task
must be completed with fewer analysts, similar if not greater tracking accuracy
requirements, and less tracking data, Therefore, a new methodology is required
for operational interplanctary navigation.

Onc constraint on any proposed solution to this problem is the utilization of



realistic error sources and modelsto accurately determine if the selected approach
will beuscfulinthe actual tracking process. In addition, the proposed solution
must integrate casily with current navigation approaches. A Kalman filter ap-
proach will be used for future interplanetary missions, so the solution must be
compatible with this recursive filter method. Due to the desire to minimize track-
ing station usc, personnel costs and complexity, conventional Doppler and ranging
data will be the data types used in this analysis. Finally, the approach must be
implementable ina modular fashion. This is not only to avoid extensive modifi-
calion of existing orbil determination software, hut to allow the t{esting of other
approachesin a smoother and less complicated fashion.

Along with the change from the least-squares filter to the Kalman filter, another
major change inthe current filtering practice being studied is reflected in the
so-called enhanced filier ['i’]. Current practice involves modeling certain Earth
platform and transmission media effects as consider parameiers in the filter. In
other words, these parameters arc allowed to aflect the covariance of the estimated
state, but arc not themselves estimated, The enhanced filter calls for inclusion
of these parameters in the estimated state vector. When compared with current
filtering practices, the result is increased accuracy in the state estimates [7]. This
filtering strategy is currently beingtested using real flight data from Galileo [8].
The enhanced Kalman filter is utilized in this paper.

The approach taken here is to utilize radiometric (Doppler and rang-c) data
ant] to establish navigation improvements through the usc of adaptive filtering
algorithms. ‘Jhere arc bencfits to this approach, in addition to the systematic tun-
ing of the operational filter. Suppose the process noise and/or data noise profile
changes during the mission, for example, if the acceleration profile of the spacecraft

changes significantly due to unmodeled venting. Then, the need for a non-labor



intensive method to detect changes in the data profile and to point to the source of
the changes is clear. A Kalman filter bank (proposed here) will allow the anayst to
model several filters simultaneously and directly compare the results automatically.
The filter bank will determine which filter isoper sting optimally (where optimal
is preciscly defined Jater) with respect to the measurement dat a, thus helping the
process of selecting the filler parameters. For the case where the process and/or
measurement noise profile changes, the fil' er bank can de-sclect a given filter and
choose a different filter that more closely matches thecurrent environment. In
this way, in addition to the establishment of a systematic method to choose the
operalional filter parameters and to detect environmental changes, the orbit de-
termination process can be completed with fewer team members, while potentially
increasing the accuracy and timeliness of the resu Its.

The adaptive estimation solution described inthis work solves the orbit deter-
miniation problem very effectively given the real-world constraints. The adaptive
filter can be used as an effective tool to assist the navigation cngineer in selecting
filter paramecters, thus allowing a closer match of the filter pararncters to the true
values, leading to a potentially more accurate navigationsolution. In addition, this
method requires fewer hours of processing and analysisand alows a smaller group
of analysts to dctcrminc accurate navigation solutions. More importantly, the long
term objective of this study is to develop an adaptive filtering methodology that
canbe used for processing of actual missiondata. It is shown in the subsequent
analysis that this objective is successfully achieved.

Several mecthods were investigated in terms of ability to determine both process
noise and mecasurement noise parameters and to be general enough to handle a
time-varyin,g problem. Since the Kalman filter is already in usc and is planned for

future usc for orbit dctermination,a method utilizing this approach is desirable for



implementation masons, 1t was found that the most desirable approach, in terms
of these constraints, is the Magill Kalman filter bank [1]. T'his approach, also
known as the Multiple Modcl Estimation Algorithm (MMEA), has been shown to
be a practical algorithmin solving real-world problems 2], [3], [4]. One important-
problem that can be solved most effectively using the Magill filter bank is that of
hypothesis testing, which is to choose from a finiteset of filters which hypothesized
filter in the bank is the correct one [5], [6]. The Kalman filter bank implemented
in this study is utilized as a hypothesis tester. The proposed mcthodology is a
practical cxtension to current navigation practices for interplanclary spacecraft,
Inaddition, the cost of intcgrating this approach with the current operational
cnhanced Kalman filter is minimal. The Kalman filter does not niced to be modified
in any way to implement this scheme. All that isrequired from the filter arc pre-
updatle measurement residuals and the covariance associated with these residuals
al each data point, which arc computed by thec Kalman fillter already. Finally,
the assumptions that arc required for application of the filter bank are the same
that govern the usc of a single Kalman filter. Thus, if the problem is formulated
to work properly with the Kalman filter, the filter bank approach can be used
without modification [(i].

The scenario chosen for this study is the Mars Pathfinder mission, scheduled
for launchinDccember 1996. Specifics of the mission plan, including launch and
arrival dates and the tracking scenario, are presented. A model was developed to
represent accurately, but with moderate complexity, the actual data reccived by
the filter duringa mission. This model, consist ing of thespacccraft state, solar
radiation pressure cffects, simall unmodeled acceleration effects, transmission media
effects and Farth platform effects, is used to generate tracking data.

Various computational algorithms were studied to solve the adaptive filtering
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problem, arid all the methods have the characteristic of inci easing in computa-
tional cost as the number of filler parameters to be determined increases. For this
reason, it is desirable to determine only the most critical error sources and to con-
centrate effort inthe analysisonthese areas. The Icss significant errors will remain
as parameters in the filter, but will not participate in thec adaptation. A special
type of covariance analysis, or error budget analysis, is utilized here to catalog the
contributions of particular error sources or error source groups to the overal esti-
mation error. The error budget is presented for X-band range only, Doppler only,
and Doppler plus range mca surement scenarios {or the Mars Pathfinder mission.
Results arc given for several diflerent sets of noise paranetersincluded in the
adaptive scheme. 'Tracking schemes considered include range only and Doppler
only. The main result is the demonstrated ability of the adaptive Kalman filter
bank to determine the underlying measurement and process noise strengths. In
addition, the results for the changing noise strengths case show the ability of the

filter bank to detect environmental and/or spacecraft changes.

2 Mars Pathfinder Mission

The Mars Pathfinder mission is the first of a series of low-cost rapid turnaround sci-
ence missions from NASA’s Discovery Program. This mission will serve primarily
as a demonstration of kcy technologies and concepts for use in future missions to
Mars using scientific landers. in addition, Pathfinder includes a significant science
payload. Investigations of the Martian atmospliere, surface meteorology, surface
geology and morphology, and the elemental composition of Martian rocks arid soil
arc scheduled for Pathfinder. A free-ra)lging surface microrover is also part of the
mission. This microrover will be deployed by Pathfinderto conduct technology

related experiments and to serve as amechanisi n for instrument deployment [9].
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The mission is scheduled for the 1996 Mars launch opportunity, with a 30 day
launch window beginning on December 5, 1996 and ending on January 3, 1997.
The arrival date at Mars is fixed at July 4, 1997, The transfer time will vary from
212 days to 182 days, depending on the actual launch date. The trajectory used
for this study corresponds {o the January 3, 1997 launch date. Upon arrival at
Mars on July 4, 1997,1he spacecraft will perform a direct entry into the Martian
atmosphere. To achicve a landing, a parachute is deployed along with a rocket
braking system andanairbag system. After landing the primary surface operations
begin, whichincludes deployment of the microrover [9].

The interplanctary transfer phase of the Mars Pathfinder inission is under in-
vestigation here. The adaptive filtering approach proposed for the interplanctary
navigation problem is not dependent on the Mars Pathfinder mission. The Mars
Pathfinder scenario is chosen so that the adaptive filtering method could be tested
using a realistic interplanetary mission. Epoch conditions arc known for the space-
craft and the planetson March 5, 1997. The data arc used inthis study lasts for
105 days from the epoch, or until June 18, 1997. A plot of theldarth, spacecraft
and Mars trajectories is shown in Figurc 1. The trajectory characteristics (the
shaded portion of Figurel) are detailed in ‘Jable 1. During interplanetary cruise,
the scientific imstruments will be checked but not used.

Theinterplanctary cruise portion of the mission begins approximately seven
days after launch(l.47) and ends 15 days before encounter (M- 15). The main task
during interplanctary cruise is to determine the required corrections to the trajec-
tory to ensure the spacecraft arrives when and where it is scheduled. The nominal
mission plan has four Trajectory Correction Mancuvers (1'CM ‘s), if required. The
first two mancuvers are scheduled at 1.+30 days (to correct for injection errors)

and1.4-60 days (to correct remaining injection errors and 1T'CM 1 errors). The




third maneuver is scheduled for M-60 days (for entry targeting), while the final
mancuver is planned for M-10 days (to insure the landing conditions arc met).
Thus the data arc used here begins after the completion of the first two T'CM’s
and will include the third TCM. The solution atihe end of data processing will be
propagated to encounter, which includes the fourth TCM. Thenavigation solution,
obtained after processing the data from tlic 105 day interplanetary cruise, will be
used to support the final T'CM if the maneuver is required. The errors duc to the
fourth T'CM will not affect the navigation solutionsignificantly [9].

The tracking scenario contains data taken from the Deep Space Network (DSN)
34-m High Yfliciency (1115F) Deep Space Stations (1)SSs) located near Goldstone,
California (DSS 15), Canberra, Australia (DSS 45) and Madrid, Spain (DSS 65).
The tracking schedule includes onc pass of data for eachstationper week. The
tracking passes arc started with DSS15 on the first day, 1)SS 45 on day four
andDSS 65 onday six. After each station makes one pass, six passes (days) arc
skippced before the next pass at that station is initiated. ‘1'bus, DSS 15 will next
track on day seven, 1SS 45 on day tenand DSS 65 on day twelve. This pattern
is repeated untilthe end of the considered portion of the trajectory. The interval
between data points is ten minutes with range and Doppler data collected at the
same time. The minimum elevation angles arc 50° for DSS 15 and DSS 65, and
30° for DSS 45. Data points for times when the clevation angle is smaller than
these values arc rejected. All data points that meet the requirements for the day
of the pass and the minimum elevation angle arc included inthe data set. These
criteria were set in order to simulate the specified tracking schedule onone 4 hour

pass per week at each tracking station during interplanctary cruise [9].




sCovariance Analysis

The reduction of the estimation errors in the navigation problem is an area of
study that has received considerable attention inrecent years. one method of
improving navigation accuracy is the usc of advanced data typcs,such as Very Long
Baseline Interferometry (VI.BI). The drawbacks to using advanced data types is
their expense due toextensive antenna ti1 nc requirements and the usc of multiple
DSN sites simultaneously. For this reason, ancilo1t has beendirected at improving
the navigation techniques using radio Doppler and ranging data collected using
NASA’s DSN [7]. The main attraction of these conventional data types is that
they are routinely collected in tracking, telemetry and command operations. For
example, radio Doppler data is available from communicating with the spacecraft,
making this data a free by-product of the communicationlink. Another advantage
of these data typesis theirlong history of usc for tracking. This is important since
the measurement error models are well developed due to the large set of data from
several dccades of missions.

In order to improve the navigation accuracy using conventional data types, it
is desirable todetermine the significant error sources that contribute to the total
estimation error on a particular mission. Once the most significant error sources
have beenidentified, more detailed work on those specific error sources can be
completed with a goal of reducing their contribution to the overall error. This may
be accomplished in many ways, such as iinproving the mathematical models based
on past experience or by using data at different frequencies to reduce frequency
dependent errors.

The method used to identify the major error contributors is the so-caled lincar

covariance analysis [1 O]. Covariance analysis can be used to study changes in filter
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performance dueto configuration changes in the filter. Examples include study-
ing the effects of unestimated parameters and using incorrect aprior: statistics on
the overall state estimation error [11]. An error budget, canbe developed which
catalogs the contribution] of a particular error source or ecrror source group to the
total navigation uncertainty. The error budget identifies the most significant error
sources for further study. A result easily obtained from the error budget tables is
the sensitivity of the filter to variations in the input parameters. The error groups
considered here consist of spacecraft accelerations due to solar radiation pressure
and small nongravitational accelerations (due to gas leaks, thruster misalignment,
clc), tracking station position errors, refraction due to the troposphere and iono-
sphiere, and errors in the FEarth orientation (pole motionandU7'1 errors). These
errors arc the major contributors to the estimation error in interplanctary orbit

determination [1 2].

3.1 Error Budget Calculations

in general, the error budget is a summary of the contributions of all error sources
which affect the filter estimate at a specific time, whether modeled explicitly or
not. For thisanalysis, it is assumed that the filter model and the truth model are
the same. This implies that the filter model is an accurate representation of the
real world.

The model used in the covariance analysis is the same as the model used in
the simulation with the following exceptions. ‘1 ‘he covariance analysis included
gravitational effects due to all planets and the Moon, while the simulation con-
siders only central body gravity, In addition, light time corrections were made in
the covariance analysis that were neglected in the simulation. Thus, the covari-

ance analysis results are based on a more accurate model than was used in the
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simulation.

Error budgets were developed for the Mars 1 *athfinder interplanctary cruise
scenario and data schedule described earlier for Doppler-only, ranging-only and
Doppler-plus-ranging data scts. The statistics for the orbit determination errors
at the end of the tracking were propagated to the nominal time of Mars encounter
and cxpressed in termsof the B-plane coordinate frame [14]. This coordinate
frame, also known as the aiming plane, is defined by unit vectors S, T and R.
The vector S is parallel to the spacecraft velocity vector relative to the target
planet (Mars) at the time of entry into the {arget planet’s gravitational sphere of
influence, the vector T is perpendicular to the target planet equatorial planc and
the vector R is such that the three unit vectors form a right handed coordinate
system. The miss vector B is the aim point for planetary encounter and lies in the
T-R planc. The miss vector would be the point of closest approach to the target
planct if the target planet did not deflect the flight path of the spacecraft (i.e. the
planct had no mass).

The statistics arc presented asal-o uncertainty of the miss vector resolved
into miss components B. R (normal 1o the target planet equatorial plane) and
B.-T (parallel to the target planet equatorial plane), and a 1-o uncertainty in
the lincarized time-of-flight (LTOF). The LTOF specifics the time of flight to
cncounter (point of closest approach) if the magnitude of the miss vector were
zero and defines the time from encounter. To convert the 1 /I'OF to a distance,
the hyperbolic approach velocity is required. For the Mars Pathfinder mission
scenario, the hyperbolic approach velocity is 5.52km/s. Tl miss vector, or the
distance from the center of Mars where the spacecraft crosses the target plane, is
4550 km oriented 201.8° clockwise from the 7" axis [9]. Plots of dispersion ellipses

inthe B-planc are made for cach case to illustrate the contributions of each error
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source {o the overall error.
Only a summary of the covariance analysis is presented here. More detailed

information on this analysis can be found in Burkhart et a [1 3].

3.2 Doppler-Only Case

The error budget results for the Doppler- only case are shownin g able 2. These
results arc the magnitudes of the B-plane dispersions about the nominal aim point
for planetary orbit insertion for each filter (truth) model error source (in a root-
mecan-square sense) and for the total filter error. The Doppler case shows that
the B+ R component of the miss vector is determined to about 25 km and the
B . T component of the miss vector is determined to about 20 km. The LTOF
is determined to about 7 seconds (about 42 km uncertainly in position). Using
1)oppler data alone, the result dots not achieve the desired accuracy. However,the
accuracy is cnoughtio ensure the safety of the mission [9).

The plot of thel-o aiming plane dispersion ellipses for the Doppler-only case
is shown in Figure 2. The ellipses shown include the total filter result (all error
sources) andthe ellipse for each error source individually. The semimajor axis
of the filter error ellipse is amost perpendicular to the line connecting the aim
point (the origin of the plot)and the center of Mars. The largest contributors to
the overall error arc thesolar pressure, the nongravitational acceleration and the

Ilarth orientation paramcters.

3.3 Range-Only Case

The error budget results for therange-only case arc shownin Table 3. For this
case, the 1?. R component is determined to about 26 km and the BT component

is determmned to about 17 km. The L'TOF is determined to about 0.6 seconds

12



(approximately 3 km). From the geometry of the the tragectory (see Figure 1) it
canbe seen that the Farth-spacecrafl range component lies in the plane including
the B-T and LLT'OF directions. The contribut ion to the overall error budget
due to most of the error sources is much smaller than the contribution due to the
mecasurement noise. This is primarily due to the sparserange data collected. Most
of the errorsin this case will probably be covered up by the measurement noise
when adaptation) is attempted.

The plot of the ciror ellipses for the range only case appearsin Figure 3.
The biggest contributors to the overall error arc the nongravitational accelera-
tions and mecasurement noise, with smaller eflects due to the solar pressure and
troposphere similar inmagnitude. Earth orientat ion is much less important than
for the Doppler-on] y case and the mcasurement noise contributes more to the
range-ollly errors than to the Doppler-only case. In addition, the1iongravitational
accclerations contribute more to the overall error for this case than the Doppler-
only case. The measurement noise ellipse is oriented slightly differently than the
other major error ellipscs, which is also different from the Doppler-only case, where
the mcasurement error ellipsec was oriented closer to the major error sources. As
before, thesemimajor axis of the error ellipse is nearly perpendicular to the aim
point-Mars equator linc.

Duc to the mission requirements for Mars Pathfinder, the amount of data col-
lected ismuch less than in past missions. The contribution tothe total error by
the measurement noise seems large considering 1 he inherent accuracy of the mea-
surement. By extending the length of the tracking passes inthe current scenario
to approximatcly double the number of data points, a significant reductionin the
contribution to the total uncertainty due to measurement noise is experienced: a

reduction of threce kilometers in the B - I direction, half a kilometer inthe B. T
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direction and threc quarters of a kilometer in the L7T'OJ dircction.

3.4 Doppler Plus Range Case

The error budget results for the case where both Doppler and ranging data are
used is presentedin tabular form in g'able 4. For this case the B . R component
of the miss vector was determined to about 17 km and the I3 .1 component of
the miss vector was dectermined to about 12 km. The LTOF was determined to
necarly 0.4 seconds (nearly 2 km in positional uncertainty). As for the other cases,
nongravitationalaccelerations were the dominant error group, with solar pressure,
Ilarth orientation and measurement noise as the next most significant error source
groups.

The error cllipses for this case arc plotted inFigure 4. Theaddition of Doppler
data raises the error contribution] from Iarth orientation andionosphere error
groups comparcd to the range data alone, but Doppler data helps reduce the
contribution from the other error source groups except for the range biases and
results ina much reduced overall error than range data alone.

From the resulls obtained, it is clear that the goal of reducing the overall
navigation error canbe best achicved by concentrating effort on spacecraft accel -
crations (solar pressure and random nongravitational accelerations), measurement

noise. These errors will be the focus of the adaptive filtering.

sAdaptive Filtering Approaches

An implicit assumptioninthe Kahnan filter isthat all of the system parameters,
including the state transition matrix, the measurement partial derivatives with
respect io the state, and the process and measuirement noise matrices arc known.

In general, this is not the case. Often there arc parameters not included in the
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filter model that influence the measurements, This results in amodeling mismatch
between the filter and the measurements which aflects tile state transition matrix
and the mea su rement partials. in addition, the process noise and measurement
noisc matrices arc rarely precisely known. For these reasons, it may be desirable
to apply an adaptive filtering scheme to tile problem at hand.

The general problem to be solved is described by
ziyn = Pzt
y, = Hiz;+v;
where z; is the state vector, @; is the statle transition matrix, u; is the process

noisc vector, v; is the measurement noise vector and H ; is the mcasurement, matrix.

Both«; and vi arc uncorrelated zero-mcall Gaussian white noise sequences with
FAu;} =0, E {uﬂt?} = Qb
1 {v;} =0, 1 {vol} = RS,

where Q is a nonncgative definite matrix and R is a positive definite matrix, both

with unknown true values. The standard filtering problem is to estimate 2; based

onthe observation set Y* == {y, y,, . . ., ¥;}, where the estimated values will be

denoted Zi- In this case, the discrete Kalmanfiller is used:

M = 204K (v - 1H2D)
K, = PO’ (npool + R)“]
PY = (- K1) PO
where K;is the Kalman gain and vi = y; — H:2;""is the mecasurement residual

with covariance IIPg—)II3'+R. This solution is optimal based on exact knowledge
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of Q and R. However, since this is not the case here, an adaptive filter will be
used tohclp determine input values for Q and R

The first step in selecting an adaptive filtering scheme is to study the tech-
niques available. Bascd on the discussion present cd by Mehrain 1972, adaptive
filtering methods can be divided into four groups: maximum likelihood, correla-
tion covariance matching and Baycsian [15]. Covariance matching techniques will

not, re discussed here.

4.1 Evaluation of Adaptive Methods

Three main adaptive estimation approaches were cvaluated during this study. The
details of anextensive literature survey can be found inBurkhart [16].

The first approach investigated was a maximum likelihood method proposed
by Meyers and Tapley [1 7]. This approach ulilizes a so-called Adaptive Limited
Memory Filter (ALMYF) which involves the formulation of unbiased estimates for
the noise variances and covariances (both are assumed onzer 0 in the paper) and
computing estimates scquentially based on a user-specified set of data. The Meyers
and Taplcy approach does not appear to ofler a significant improvement over the
current operational approachin terms of making the tuning process more system-
alic.

The second approach tested was aninnovation correlation approach formulated
by Mchra [18]. The original Mchra formulation, which is for a linear time invariant
problem, was tested on the Mars Pathfinder interplanctary orbit determination
problem. When the system has small tiine variations, the approach is generally
robust enough to be cflective. However, inthe orbit determination problem, the
mcasurement matrix H; has large variations over each tracking pass and from one

pass to thenext. As expected, the results from direct application of Mchra's scheme
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were not very good. Mehra’s scheme was then re-formulated as part of this study
for time-varying systems and applied 1o the interplanetary orbit determination
problem, again without good results. Other authors (including Bélanger [1 9])
have generalized Mchra’s scheme for time-varyillg stationary problems without
good results. This method is apparently best suit cd for time invariant problems,
and is not applicable to the interplanetary orbit determination problem.

The final approach evaluated was a Bayesianinethod formulated by Magill [1].
The approach is to implement a bank of Kalman filters, cach modeled with differ-
ent values of a finite unknown parameter set. 1'he method,in its original form,
computes the weighted sum of the estimates from each filter to determine the op-
timal adaptive estimate. Another way tile Magill filter hasbeen applied is as a
multiple hypothesistester. ]n this use, the output of interest is the weight for each
filter inthe bank, which is used to determine which hypothesized filter in the bank

is {the correct onc [5].

4.2 Adaptive Kalman Filter Bank Develo}»ment

Bascd 011 the literature review and preliminary simulation studies, the adaptive
estimator implemented in this work is the adaptive scheme first introduced by
Magill [1], This methodis known as simply the Kalman filter bank or the Multiple
Mode] Istimation Algorithm (MM EA), shown inFigure 5 [5]. The main reason
this approach was selected is that it solves this par titular problem well. In addition,
there arc norestrictions beyond those required for usc of the Kalmanfilter that are
required to implement this approach [6], I'inally, this approach fits quite well with
the current orbit determination approaches in use for interplanctary navigation.
Implementation of this approach will not require a new filtering methodology or

exlensive modification to the current filter.
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The problem o be solved may be stated as follows: An estimate is desired for
a sampled-data, Gaussian process, which may be corrupted by additive noise, such
that the estimate minimizes some performance measure. The observed process is
afunction of some unknown parameter vector, a,which isa member of a finite
set of known paramcter vectors [1].

Assumec that the parameter vector « is a random variable that may or may not
be Gaussian. This implies that o is an unknown constant for a specific sample run,
but has a known statistic] distribution, The optimal cstimate 2, isa weighted
sum of the individual Kalman filters, with each filter opcrating with a different

value of ar. The weighted sum is given by

L
AL ACHCH Y (1)

where p(a;|y3) isthe discrete probability for «; conditioned onthe measurement
scquence ¥i. The problem now is reduced to the determination of the weight
factors ]7(a1|y2),]’(a2|y}§),ctc. As the measurement -process evolves, these values
will change with each step recursively. As more i1 ncasurcments arc processed, tile
knowledge of the state and the unknown parameter o will increase. If as time
progresses it is possible to learn which stochastic process is observed, then it is
reasonable to expect the optimal estimator to converge to the appropriate filter for
that process. In terms of the block diagram in Figure 5, the weighting coefficient for

the true filter will converge to onc while all of the rest will convergeto zero []], [20].

The weighting factors p(o;|y;) are the adaptive feature of this estimator [1].

Using Hayes' rule, the weightsare computed via

p(Yilai)p(a) 1

plag lyy) o= i=1,2,..., L. 2

i1 p(yilag)p(ag
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The values for p(a;)arc assumed known, so allthe termsinthis relation are known
except for p(yile;). To compute the value for p(¥j|er;), the processes  and ¥
will be assumed to be Gaussian. In addition, the measurcment sequence yj will
be assumed to be a sequence of scalar measurcments Yo, Y1, . . . . Y- When these

conditions are applicd, the result is

1 1 (= Hizy )

exp [—= * e (3
P\ 2 T, pint 4 1) | M 1) @)

piles) = .
\/27r (1P 1T+ 1Y)

In general, p(yi|o;) will ‘be different for each filter in the bank.
Inthe Mars Pathfinder problem, only the apes.teriori probabilities p(a;|y}) for
cach hypothesis arc computed by the filter bank. As the filter bank processes
data, the weighting factor for the best filter will increase while the other weighting
factors dccrease [5]. For this problem, the Kalman filters are assumed to have an
unknown measurement, noise variance, in addition {o possibly unknown process
noise paramcters. All other parameters and models between the filter and the
environment are the same. Thus the MMEA will be determining the filter with the
parameters that arc the closest to the values from the environment, as determined

from the mcasurcments.

5 Results

Results from scvera. sets of cases arc shown.The first set of results arc for range
cases where all noise parameters arc included in tile filter, but only asclected group
of parameters arc adaptively determined. The casc presented here is for adaptation
of mcasurement noise and NGA parameters. In addition to the range cases, several
cases where Doppler data is processed are shown. The fina case shown involves a
change in the nongravitational parameter during tracking. Range data is utilized

in this study along with a high-gain antenna, which reduces therandom noise
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component of the noise profile. ‘I'his allows the Kalman filter bank to run over a
larger sct of data [1 6].

All results presented arc for range measurements only and for Doppler mea-
surements only. The weighting coeflicients for cach filter in the bank arc presented
in the encounter plane along with the estimates, computed error covariances and
true values. All crror ellipses plotted for the filter bank results show 1 -o errors.
The ellipses for the simulation results are oriented differently than those for the
error budget analysis due to the inclusion of planetary gravity in the analysis,

which was not included in the Mars Pathfinder simulation.

5.1 Range Case

The first case considered adaptls the non gravitational accelerat ion parameters and
the mecasurement noise parameter. A bank of 15 Jilters is sel up with the scaling
from the nominal values as shownin Table 5. The filter numbers are determined
as shown in the table. For example, filter 14 has a measurement noise that is ten
times the nominal valuc and a NGA steady-state variance that is five times the
nominal value.

The weighting factors for this scenario are plotted inFigure 6. This plot shows
nonzero weights for filters 6, 7 and 8. The weight for filter 8 is ncarly unity, while
the other filters have negligible weights. The filters inthebank that do not have
the correct mcasurement noise paramecter arc eliminated quickly by the MMEA,
with the remaining databcfore a bank is chosen used to differentiate the process
noisc vaues for thefilters with the correct measurement noisc parameter.

The encounter plane estimates and covariances for filters 6 through 10 arc
shownin Figure 7. Yor this case, filters 6 and 7 appear tobec quite close to the

truth. IFilter 8, with a slightly higher weight and the correct filter, had slightly
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worse estimates. Since these results are based on a single realization of the random
processes, Monte Carlo analysis with different realizations of the random processes
was conducted to verify the expected results. These Monte Carlo results are pre-

sented in Burkhart [1 6].

5.2 Doppler Case

The Doppler case adapts the nongravitational acceleration parameters and the
measurement noise parameter. A bank of 15filters is set up with the scaling from
the nominal values as shown in Table 5 for the range case.

The weighting factors for this scenario as-e plot ted in Figure 8. This plot shows
nonzero weights for filters 11to 15. The weight for filters 11 and 12 are approxi-
mately 0.4, whilefilter] 3 has a weight near 0.25 and filters 14 and 15 have weights
of shout zero. As belore, the correct filter is filter 8. ‘Jbus, for this case, the
filter does not converge to the correct filter. These results for the Doppler case
arc not as conclusive as for therange case. Problems with the formulation of the
Doppler measurement duc to linearization and the diflerenced range formulation
arc apparent from the results. The filter chosen by the filter bank has similar or

smaller process noise and larger mecasurement noise comparedto the environment.

The encounter plane estimates and covariances for filters 8 and 11 through 15

are shown in Figure 9. For this case, filter 8 appcars to be the best filter.

5.3 Study of Noise Parameter Variations

The final run presented involves simulated data with a change in the nongravita-
tional acceleration steady-state variance after approximately half of the tracking

segment is complete. The parameter change represents a possible valve leak after
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aTCMor some other change in the force profile of the spacecraft. This variance
is assumed constant for the first part of the tracking. After 62 days of tracking, or
just after the Mars Pathfinder TCM 2, the parameter is changed to a new constant
value. This situation represents the effect of a thruster leaking after it is fired for
the T'CM, a leak in a fuel line, or some other phenomena related to a thruster
malfunction. The process noise term is scaled by 10, which corresponds to scaling
the NGA variance by v/10. The scaling was chosen to be such that the correct
filter (after the variance change) is no longer part of thebank of 15 filters (see
‘Jable 5).Inthis way, the case will illustrate that the bank will converge to the
filter operating the closest to the data’'s noise profile. All error sources are included
inthe simulation.

The weighting factors for each filter are shown in Figure 10. For the first 60
days of tracking, the filter is converging to filter 8, which is the correct filter. After
the change in the variance, the filter quickly selects filter 9, which has nominal
values for all variances except a scaling on the NGA of 5. It is thus shown that

the bank is able to detect changes due to unmodcled thruster variations.

6 Summary

The adaptive Kalman filtering methodology was developed using the enhanced
Kalman filter and the Magill filter bank. The approach was used toadaptively
dctermine the steady-state noise variances in the states for the Mars Pathfinder in-
terplanctary cruise mission. Tracking scenarios used inthe adaptive study included
rangconly and Doppler only data.The cases studied were determined based on the
error budget results, where the most significant errors for each tracking scenario
were found.

Results for the range cases show that the adaptive algorithm chooses the filter

22




withthe same parameters as the simulated data. Cases where there was no clear
winner were showrn to have several filters with nonzero weights and similar perfor-
mance. Smaller error sources arc more difficult todetermine,lcading to selection
of nosingle filter, but rather several with similar performance. Based on these
results, the filter bank will be a useful tool in the tuning process for the opera-
tional filter. In addition, the bank is useful for { he determination of changes in
the tracking data, giving some warning of potential problems such as a thruster
malfunction or some other change in the accelerat ion profile of the spacecraft.

Results for the Doppler cases are less conclusive. One problem with this for-
mulation of the Doppler measurement is the effect of roundofl errors duc to the
linearization and the differenced range formula. Yor example, the range values arc
onthe order of 108 km. The measurement noisec on the Doppler measurement is
0.01 mm/s, or 10°km. The diflecrence is16 digits, or near the numerical limits
of a 64 bit number.In addition, the differenced range formulation implemented in
the partial derivatives and the data generation may be susceptible to differences
duc to INarthrotation from the start to the end of the tracking pass. Onc way to
address these problems is to implement a more theoretically correct version of the
range rate measurement.In addition, an extended Kalman filter, which dots not
involve a lincarization about a reference trajector y, may help this problem as well.
The 1)oppler results in genera] show that filters with larger mecasurement noise are
chosen, while the other filters have zero weights. In most cases, the filters with
correct or smaller process noise are chosen, as for the range case.

A nexti step is implementation of the filter bank for usc in processing actual
mission data. The proposed method could be used by the navigation team mem-
bers making the individual runs to systematically eliminateincorrect filter models.

This could be completed by several individuals independently, with comparison of
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results after processing is complete.

Onc additional advantageis the obvious parallel computing possibilitics with
this approach. This approach can be implemented using scarch methods (such as
genelic algorithms) to update the filter bank for operationinan iterative fashion.
Thesc genetic algorithms can be implemented easily using the filier bank and can
be implemented in a parallel processing environment.

The Kalman filter bank is a method that has a successful history in real-time
applications such as power system faull detection, image processing and terrain-
height correlation for helicopter navigation. It has been shownhere to also have

application in interplanctary orbil determination.

7 Acknowlegdements

The authors would like to thank Jeff Iistefan, Vincent Pollmeier, Sam Thurman
and Dr.Lincoln Wood of the Jet I'repulsion Laboratory for thcir contributions to
this study. This study was partially funded under contract .11'1,959577 from ihe

Jet Propulsion Laboratory.

8 References

(11 Magill, D. ‘I'., “Optiinal Adaptive Estimation of Sampled Stochastic Pro-
cesses,” 1K Transactions on A utomatic Control, Vol AC- 10, No. 4, Octo-

ber, 1965, pp. 434-439.

[2] Brown,R.G.and Hwang,P. Y. C., “AKahnan Filter Approach to Precision
GPS Geodesy,” Navigation, Journal of the Instilutc of Navigation, 30:, No.

4, Winter 1983-84, pp. 338-349.

24




[3]

4

3]

(6]

(7

[8]

[9]

Mealy, G. 1,., “Application of Multiple Modcl Estimation to a Recursive Ter-
rain 1 leight Correlation System,” IEEE Transactions on A ulomatic Control,

Vol. AC-28, No. 3, March, 1983, pp. 323-331.

Girgis, A. A. and Brown,R. G., ‘‘Adaptive Kalman Iiltcring in Computer
Relaying: IFault Classification using Voltage Models,” 1EEE Transactions on
Power Apparatus and System, Vol. PAS- | 04, No. 5, May, 1985, pp. 1168-

1177.

Brown, Robert G. and Huang, Patric Y. C,, Introduction {o Random Signals
and Applicd Kalman Filtering, Second ldition,John Wiley and Son S, 1992,
pp. 398-402.

Brown, R. G., “ANew Look at the Magill Adaptive lilter as a Practical
Means of Multiple Hypothesis Testing,” IEIE Transactions on Circuits and

Systems, Vol CA S-30, No. 10, October, 1983, pp. 765-7G8.

Istefan, J. A., Pollmcier, V. M. and Thurman, S. W., “Precision X-Band
Doppler and Ranging Navigation for Current and Future Mars Exploration
Missions,” Advances in the Astronautical Sciences, J. Tclesand M. V. Samii,

Editors, Vol. 84, Part 1, pp. 3-16, 1993.

Bhaskaran, S.,, Thurman, S. W. and Pollmmeier, V. M., “Demonstration of
a Precision Data Reduction Technique for Navigation of the Galileo Space-
craft”, Advances in the Astronautical Sciences, J. F.Cochran et a., Editors,

Vol. 87, Part 11, pp. 785-798, 1994.

Kallemeyn, 1'., “Pathfinder I'reject Navigation Plan - Critical Design Review

Version,” JI’L, Document D-11349 (Internal Document), July, 1994.




[1 O] Gelb, A., Applied Optimal Estimation, MIT Press, 1974.

111 Bierman, G.J., Faciorizalion Methods for Discrete Sequential Estimation,
) q

Academic Press, 1977.

[12] Jordan, James F., Madrid, George A. and Pease, Gerad k., “Iflects of Major
Error Sources o1 Planctary Spacccraflt Navigation Accuracies”, Journal of

Spaccecraft and Rockels, Vol. 9, No. 3, March, 1972, pp. 196-204.

[13] Burkhart, 1'. 11., Bishop, R.11. and listefan, J. A. “Covariance Analysis of
Mars Pathfinder interplanetary Cruise”, Advances in the A stronautical Sci-

ences, . Jacobs, Series Editor, Vol. 89, 1995.

[14] Kizner, W., “A Method of Describing Miss Distances for Lunar and Inter-

planctary Trajectorics,” JPL Faxternal Publicalion No. 674, August1,1959.

[15] Mchra, Raman K., ‘‘Approaches to Adaptive Filtering,” INIJE Transactlions

on Automatic Control, October, 1972, pp. 693-698.

[16] Burkhart, 1'. )., “Adaptive Orbit Dctermination for Interplanetary Space-

craft,” Ph.D. Dissertation, T'he University of Texasal Austin, May, 1995.

[17] Meyers, Kenneth A.and Tapley, Byron1)., ‘Adaptive Sequential Estimation
with Unknown Noise Statistics,” IFEF Transaclions on Automatic Control,

August, 1976, pp. 520-523.

[18] Mchra, Raman K., “On the identification of Variances and Adaptive Kalman
Filtering,” 1I2I1 Transactions on A utomalic Control, Vol. AC-15, No. 2,

April, 1970, pp. 175-184.

26




[19] Bélanger, Pierre R., “Estimation of Noise Covariance Matrices for a Lincar
Time-Varying Stochastic Process,” Automatica, Vol. 10, May, 1974, pp. 267-

275.

[20] Hilborn,C. G., Jr. and Lainiotis, D. G., “Optimal Adaptive Filter Realiza-
tions for Sample Stochastic Processes with an UnknownParameter,” IEILE
Transactions on Automatic Control, Vol AC-14, 1)ecember, 1969, pp. 767-

770.

27




2 . 5 T T T — —_—
2 ...........
15| MarsOrbit ... ... ... ..

/" Spacecraf bt

O 5 ......................... SiartTrackh ..........
g o s S
> _Earth Orbit
05| e K FOTTUP RN
_] ..... AYUUE DRTT OO PP Stop ‘TI acking .........
1§ e Sge e s
_2 .........
2.5 : ; ! ——
2 1 0 | 2
X (km) x108

Figurc1: Mars Pathfinder Trajectory (planar projection)

Table 1: Mars Pathfinder trajectory characteristics (March 5-June 18, 1997)

" " parameter l Value (start T0 end of arc) ||
[ Tarth to spacecraft range (km) 36.2 x 10% to 180 x16°
Geocentric Declination (deg) | 15.8510 —-0.12
Swhli-1tartll-1'robe (SEP)angle (d:cg) ' 14_155];7
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R (km)

Table 2: Error Budget -1 )oppler Measurements

Error Source B.R| BT |LIoy
(km) | (km) | _(see)
Fpoch State 0.001 [ 0.005 | 0.003
SRP Parametors | 10.692 | 10.454 | 6.829
Nongrav Accel. 18.252 | 137633 | 2.822
ionosphere 1.917 [ 1.297 | 0.189
Troposphere *~ 5.62562a|. 3 1 5| 0.577
Station locations 5263 | 4.484 | 0.534
Farth Orientation | %1217 =235\ 10°31
M easuremmentl Noise | _7.102 ' 0.751

o i

__ RSS Total | 25.379 ] 20.260 | 7.542 ]
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Figure 2: Aiming I'lane Dispersions (I-2) Doppler data
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Table 3: Krror Budget - Range Measurements

Error Source | B - R| "B-T | 110F

Gm) | (km) | (seo)

| Epoch State 1,16¢ —44[3.n3c =4 |5.38¢c -6
SRP Parameters 8858 |~ 7079 | T 0.222
" NongravAccel, | 19616 | 12667 0.369 |
lonospherc 0220 | 0.147 | 0.007
Troposphere 7001 | 4121 | 0.097
Station Locations | 5.075 4.162 0.170 |
Jarth Orientation 1652 |  1.041 0.057
Range Biases 4549|  1.776| 0140
‘Mcasurcment, Noise __]l1T592_3 5836 0.321

RSS Tlotal | 26.307] 1688C] ~ 0591

=21

-1

B.R (km)

nNY

i i i i A
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Figure 3: Aiming Plane Dispersions (1-0) - Rauge data
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‘Jable 4: Krror Budget - Doppler Plus tange Measurements

FKrror Source [ B Rl B T CLTOF

- | Mo— — | oy | (see)
Ipoch State 38¢--5]35c—5 [4.8¢—7"
SRP Paramcters 5.941 3759 | 0.123
Nongrav Accel. 13.299 8.533 | 0.243
lonosphere 1.138 0.712 0.016
Troposphere 217 1.648 0.040
Statiom J.ocations 2.385 2.346 0.101
Farth orientation 5.585 3.870 | 0.141
Range Biases 4.464 3.134 0.043

Mecasurement Noise 5.606 | 4.075: 0.063
RSS Total | 170041 1 17| 0335
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Figure 4: Aiming Planc Dispersions (1-0) - Doppler Plus Range data
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1.

{ (o)

NGA Filter Number
Scaling

0.1 1167 11
0.2 o7 12 |
1.0 3 81 13
5.0 4 9] 14
10.0 5 [10] 15

01 [3.0] 100

Measurement,

Noise Scaling

Table 5: Scaling factors: Measurement and NGA Paramcters
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